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Solution of the problem of forced oscillations of a spherical shell immersed 
in an infinite compressible fluid is derived and analyzed on the assumption of 
a fairly rapidly changing stress state. It is shown that in spite of absence of 
real natural oscillation frequencies [l] of the system “shell-fluid”, there exist 
frequencies that produce effects similar to resonance. Such frequencies were 
found to exist in the case of a particular pattern of pressure variation in the 
neighborhood of a spherical shell, when the basic contribution is provided by 

the damped pressure component. Formulas for the damped pressure component 
and resonance frequencies of the system are obtained in the case of high-frequ- 

ency oscillations of the shell on the assumption that a similar pattern of fluid 

pressure is also possible in the neighborhood of an arbitrary convex shell (9. 

1. Let us consider the steady oscillations of a closed shell in a compressible fluid. 
The oscillations which are assumed to be mainly flexural (quasitransverse), are defin- 
ed by the equations of rapidly changing stress-strain state [2] 

h,2A,2W-A1~-h2W+p Is-q=O, A22x+ A,W=O tl.1l 
h2 = 6J2 (PO / q2, W = 2Ehw, h,2 = h2 [3 (1 - v2)]-l 

where o is the oscillation frequency; w is the normal displacement of the shell; X 
is a function of tangential displacement; h is the shell half-thickness; ps, E, V are, 
respectively, the shell material density, the modulus of elasticity, and the Poisson co- 

efficient; A2 and are the Laplace and Vlasov’s operators on the shell surface s ; 
4 is the amplitude of periodic internal loading of the shell, and p is the acoustic 

pressure created in the fluid by the oscillating shell. 

Pressure distribution in the fluid, after elimination of the transient component, 
conforms to the Helmholtz equation and the radiation condition 

Ap + k2p = 0, lim ~a 
z,-Kv ( 

$ + ikp) = 0 

b$+=W, b=$, k=+ 
3 

(1.2) 

*) See A. P. Kachalov, The ray method for flexural oscillations of a shell im- 
mersed in fluid. Annals of Sci. Seminars of Leningrad Branch of the Steklov Mathem. 

Inst., vol.62, 1976. 
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where pf and cf are, respectively, the fluid density and the speed of sound in it, 

x3 is a coordinate orthogonal to surface S, and A is the Laplace operator in 
space. 

hr the case of a spherical shell Aa = roA1, R, = R, = r,, and its is possible 
to separate the particular equation for. IV by eliminating the function X and, then, 
substitute the normal derivative of pressure at the shell surface for the deflection func- 
tion. As a result, we obtain from the equation for the shell oscillation form the bound- 
ary condition for the Helmholtz equation in terms of pressure in the fluid, and thus 

reduce the problem to a purely acoustic one. In spherical coordinates it is of the form 

Ap + k2p = 0, lim r (6’~ / 6’r 4 ikp) = 0 

A, [b (h*2A22 - i2”+ r,,-2)8p / dr -t- p - ql Lo = 0 
W = hap I& Jr=,.,,, A,W = -roA22X 

(1.3) 

2. Separation of variables in problem (1.3) yields the following equations and 
boundary conditions: 

P (r, 0, B) = R W 64 B) (2.1) 

f$(r2 s) + [k2 - n(n$‘i)] R = 0 (n = 0, 1, 2, . . .) 

2 a 1 
sinexi ( 

sin0Z$) +---- asy+n(n+l)Y=O 
sms0 agz 

A2 {[b (I& - A”) R’ + R] Y - q} I,.+ = 0, lim r (R’ + ikR) = 0 

b, = @on 1 co, won = core-l [(h, / 7-o)2rz.2r(T+ 1)3 + 11’/~, 

co = v/E / PO 

where aon are frequencies of natural quasitransverse oscillations with considerable 
variation at the spherical shell out of contact with the fluid. 

The Hankel spherical functions 

h,t2) (cc) = (1/2n / x)“r [Ja (5) - iN, (x)1, x = kr, q = n + 1/Z 
(n = 0, 1, 2, . . .) 

represent the integrals of Eq. (2.1) for R (r) that satisfy the radiation conditions at 
infinity [a], and the spherical harmonics 

YnMO (0, b) = Pntm) (cos O)eimfi (m, n = 0, 1, 2, . . .; m < n) 

where P,(m) are adjoint Legendre polynomials of power n and order m, are the 
integrals of the equation for Y (0, fl) . 

The general solution of Eq. (1.3) can be represented in the form of series 

(2.2) 

which contains unknown constants A,,,,, that are determined by the boundary con- 
ditions at the sphere surface. To determine the constants A,, we represent the 
internal pressure q (0, fi) in the form of series in spherical functions (for this it is 
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sufficient for q (0, b) to be a twice differentiable function [4] ) 

(2.3) 

2?lE 
2n n 

fnm = m 
fn + m)! 

2n + 1 (72 -m)! SS qY?‘sinOdO@, e, = 2, e, = 1 (m>O) 
0 u 

For instance, in the case of concentrated normal force applied at point 8,, PO 

q(e p) = 8(e-eO)d(P-PO), 

ri sin 0, 
f = 2*m tn+ m)1 ,;2yim)($, PO) 
nm - 2n+1 (n-mm)! 

The substitution of (2.2) and (2.3) into boundary condition (2.1) at the sphere sur- 
face (r = ro) yields 

f,?, (Anm [b(hj,--2)~+~~']-fnm}BIY~)= 0 
n=O m=) 

By equating to zero the coefficients at harmonics Y,(m) (n, m = 0, 1, 2, . . .) 
we reduce this to a system of algebraic equations from which we obtain expressions 
for constants A ,,,,,. Substituting these expressions in (2.2) for A,, , we obtain 
for the pressure distribution in the medium surrounding the oscillating spherical shell 
the formula 

(2.4) 

R, (kr) = h?’ (kr) [ 

bet us consider the radial pressure component R, (h). After a number of iden- 

tical transformations formula (2.4) for R, assumes the form 

R?I (2) = 1/T He (;&;; ; ii;; ;;:,,, (2.5) 

Im (f (x0)) = J, (x0) Im (x0) - N, (4Re (~0) 

Re (f (x0)) = J, (x0) Re(& + N, h)Im (50) 

Im (~0) = g, 
J, izo, N,+l (~0) - J,+l (20) N, bo) 

Jp2 (~0) + Nq2 (20) 

J, (~0) J,+l (20) + N, (50) -vq+l (50) 
Jq2 (20) -t Nq2 (50) I +I 

x = kr, x0 = kro 

Since solution (2.4) is valid for considerable variations of the stress-strain state, 
it is possible to use asymptotic formulas for Bessel functions J, (4 and Neumann 

functions iv, (X) , whose form depends on the relation between the argument 
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and the index of the corresponding cylindrical function [5]. We have the following 

asymptotic formulas: for 9 = J: cos a and large Q 

J, (q cos%) = 1/g(nq tga)+cos (qtg CL - qa - JC / 4)$-O(q-“‘2) 

IV, (q COS-l a) = 1/2 (my tg a)-‘/~ sin (q tg CL - qcz - 3t / 4) + 0 (q+z) 

and for q = x ch a 

J, (q ch-l a) = (2nq th a)+ exp f--q (a - th a)] i- 0 (q-“‘2) (2.6) 

N, (q ch-l a) = (‘/, IX th a)-“% exp [q (a - th a)1 + 0 (~~“4 q 

Let us consider separately the integrals for which the condition z < q is satis- 
fied at points of the sphere and in its neighborhood. 
(z) 

The asymptotic formula for N, 
then defines a decreasing and for J, (cc) an increasing component h,@) (z) 

with increasing z , For large q the inequality Nq2 (t& > Jq2 (x0) is satisfied 
on the sphere surface by virtue of the radiation condition which stipulates that func- 

tions N, and J, must be of the same order, as r + 00. These functions in ap- 
proaching the shell reach the reversal point at x = q where they change from oscil- 
lating at infinity to exponentially varying functions. As r further decreases, func- 

tion J, sharply decreases, while NP sharply increases. 
Taking into account the above inequality, we obtain for R, (5s) the formula 

R, (x0) = [Re (x0) - i Im (z,JP (2.7) 

Re (4 = g, $ - 
N;l($) +i 

4 O I 
Im (x0) = g$VL2 (x0) [J, (&W,+1 (x0) - JW (xo)N, (x0)1 

Substitution of the asymptotic formulas (2.6) into the real and imaginary parts of 
the denominator in (2.7) yields 

Re (x,,) = 1 - g, (a, exp y - n/d, v = (4 + 1) (al- @al)- 

q (ao - th a,,) 
Im (q,) = angn sh (qy) exp I-2q (a0 - th aO)l, ch a1 = (q/-l)/% 
a - [q / (q + l)l’/~ (th a0 / th aJ/z, 
r&L, y>o 

q = n -I- 1/S, 

This shows that the quantity Im (~0) is asymptotically small (of order e--“) 
and decreases as the variation of the shell stress-strain state increases, but does not 
vanish for any finite n. 

Presence of the small imaginary component in the denominator of the expression 
for pressure indicates radiation of a small part of energy of the oscillating shell to 
the fluid. The real part Re (x0) of the denominator is at the same time of the 

asymptotic order of unity, but may vanish at some frequencies. When such frequent - 

ies coincide with that of the external excitation force, a sharp increase of pressure 

amplitude, an effect similar to resonance, takes place, Frequencies at which Re 

(%J = 0 result in resonance; at such frequencies the pressure amplitude 1 R, 
(x0) 1 is of order ezq , while at nonresonant frequencies it is of order unity. 
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Let us investigate the behavior of the radial component of pressure (2.5) near the 
shell, Eliminating the imaginary part in the denominator in (2.5) we obtain: 
in the resonance case 

away from resonance (Re (zJ > Im (x3)) 

Substituting the asymptotic expressions (2.6) for J, and N4 and expanding the 
remainder a - th a in series in powers of z - z,,, we find that at resonance 
frequencies 

R, (z) = b&-l {A, exp [q (1 - z / q,) th a, + 0 ((5 - x,)~)]+ (2.8) 

B, exp 1-q (1 - z 1x0) th a, + 0 ((x - x,)~)I} + 0 (q-l) 

A, = i exp [2q (cz,, - thao)] + ‘12, B, = - l/z, “’ 

and at frequencies away from resonance 

R, (x) = (x,, / x) {AH esp [q (1 - x / x0) th a, + 0 ((z - r,J2)l + (2.9) 
BH exp L-q (1 - x / z,J th a0 + 0 ((a: - to)“)]} i- 0 (q-l) 

AH = 1 + i Rem1 (x0), BH = --‘/2 exp I-2q (a0 - th ao)] 

These formulas show that the absolute value of the coefficient at the exponentially 
increasing component of the solution is small in comparison with the coefficient at 
the exponentially decreasing component, and can be neglected. It should be, how- 
ever, borne in mind that at infinity x > q and both components are of the same 
order, as already pointed out. 

Note that formulas for fading and increasing integrals can be obtained without re- 
sorting to asymptotic formulas. To show this we reduce Eqs. 2.1) for R (r) to the 
form 

F2Yy” (F) + [@F)’ - n (n + 1)ly (F) = 0, Y (F) = rR (F) 

whose approximate solution 

R (F) = f1 exp {& In (n + 1) - (kro)21”p (F / Fo)} (2.10) 

is valid near the sphere under condition that (kr)2 - n (n -k 1) < 0 . For large 
n this solution coincides either with (2.8) or (2.9) within the constants that are de- 

termined by comparison with the asymptotically exact solution. 

3. The approximate solution (2.10) was used for calculating resonance oscillation 
frequencies of the spherical shell in fluid for the following values of parameters: 

h / r0 = 0.01, pf /p. = 0.13, v = 0.3, e0 = 5.103 m/s 
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The calculated dependence of resonance frequencies of the shell in 

fluid from the meridional wave number n appears in Fig. 1, where for com- 

parison the similar dependence for resonance frequencies of a “dry” shell is shown by 
the dashed line. It will be seen that in the case of shell oscillations in fluid the mode 
with zero number of waves is absent along the meridian. The presence of that mode 
would violate the inequality .Z < Q, i.e. the condition of appearance of this type of 

oscillations. When the variation [of frequency] is small, the resonance frequencies of 
the shell in fluid considerably lower than those of the dry shell. As the variation in- 

creases, the oscillation frequencies of the dry and the immersed in fluid shells tend to 
become equal, and for n > 10 the shell oscillates as if with a constant apparent mass 
of fluid added to it. 

The discrepancy between solution of 

the frequency equation Re (20) = 9 by 
substituting into it the asymptotic expres- 

sions (2.6) and the approximate solution 
(2.10) was evaluated on the example of 

a specific shell. This showed that with 
n = 5 and greater, i.e. essentially from 

the bound of applicability of asymptotic 

5 to n 
formulas (2. 6), the difference is less than 
10% and diminishes as I? is increased.At 

Fig. 1 resonance frequencies the pressure ampli- 

tude increases to the level 0 (e2Q) (q 2 I), 

while in the nonresonance case it is of order unity. The calculated ratios of pressure 

amplitudes at resonance frequencies to those in the non resonance case are: 9.775, 
18.336, 39.923, 86.52, 182.43 for the first meridional numbers (n = 1, 2, . . ., 5). 
This shows that damping of resonance frequencies of the shell in fluid owing to energy 
radiation is very small, and is more apparent when the variation of the stress-strain 

state is small. 

4. Solution (2. 10) which shows the pattern of pressure damping in a medium with 
an oscillating spherical shell will be used here as the standard in investigations of 
oscillations of an arbitrary closed convex shell in fluid. We limit the investigation to 
high-frequency oscillations for which the inequality [2] 

h2 >> max (RI+, Rzm2) (4.1) 

is valid, and Eqs. (1.1) for the shell oscillation pattern reduce to the single equation 

Iz,~A~~W - h2W + p 1s - q = 0 (4.2) 

We introduce in the neighborhood of the shell the orthogonal system of coordinat- 

es Cc& B, 2) ’ where CC and p are isothermal coordinates that coincide with curv- 
atures of the shell median surface, and z is the external normal to the surface. In 

these coordinates the first quadratic form is 

ds2 = Hz (a, p) (II + zR1-’ (a, ~)l”da2 + 
[I + zR,-’ (a, f3)l”d~“) -I- dz2 
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where H (a, 8) is the Lami parameter of the isothermal system (01, /3). 
By analogy to (2.10) we assume that pressure in the neighborhood of the shellvar- 

ies in conformity with the law 

P (a, P, 4 = F (a, P) ho (a, B) + ~1~’ exp (--a~) (4.3) 

in which r. -1 zzzz (RI&)-‘Ix is the normal curvature of the surface at point (a, fl), 
and a > 0 is an unkn own large constant (a = 0 (k)) which defines the pressure 
damping rate. Taking (4.3) as the input equation, and taking into account the rela- 
tion between the deflection and normal pressure derivative (1.2) at the surface and, 
also, inequality (4.3), we obtain that 

P (a, B, 0) = --w (a, B) 1 tab) (4.4) 

As shown above, the resonance oscillation frequencies of the shell in fluid are re- 
asonably exactly determined when only the damped pressure component is taken into 
account (allowance for the increasing component is only necessary for the determina- 
tion of pressure amplitude). The respective particular equation is independent of the 
method of shell loading, hence it is possible to set q = 0 when determining reson- 
ance frequencies. Equation (4.2) with allowance for (4.4) then assumes the form 

A22W - Q4W = 0, ii-J4 = h,-2 (A2 -t 1 / (ab)) (4.5) 

Equations of this type were considered in [6]. For closed shells the solution of(4.5) 
is equivalent to the solution of the Helmholtz equation 

A,W + SPW = 0 (4.6) 

When variations of the stress-strain state are considerable, the integrals of this 
equation are concentrated in the neighborhood of equatorial geodetic Lines of the shell 
median surface and are of the form 

FY = D, (jQiY)ei~Q 

where ?? and @ are functionc of coordinates and of the large parameter CL, Q = 0, 
1, 2, . . . is the meriodional wave number, and D, (1/s) is the Hermite func- _P 

tion oscillating within band between two transition lines when ItI\(IQq+l 
exponentially damping outside that band. Omitting intermediate operations for the 

determination of f.r, y and CD which appear in [S], we write the final asymptotic 
formula for the frequency parameter 

CL! q, m = 2nm [~H(o,p)dql[l-~~&)+o($)] t4e7) 
0 0 

(q = 0, 1, 2, . . .) 

in which m > 1 is the wave number along the equator, p is the current arc of 
the equator of length L, and F, (p) is a function representing the real periodic 

along the equator solution of the equation considered in [7]. 

The parameter 62,, ,,, is related to the resonance oscillation frequency 0~. m 
by formula (4.5) which contains the unknown constant a. To determine a we use 
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the Helmholtz equation for pressure at the shell surface (for z = 0) 

&p + (RI-’ i- R,-‘)dp I dz + d*p 1 dz” + k*p = 0 

in which we substitute expression (4.3) and, taking into account (4.1) and (4.6) ob- 
tain a = (Q2 - k2)l’z. Th e obtained expression for the damping coefficient is sub- 
stituted into (4.5). After a number of identical transformations we obtain for the real 
part of oscillation frequency of the shell in fluid the equation 

p3 + @a2 - e - 2)~~ + (2e + 1)p - e = 0, p = co2 / Uo2 

p=Cf2, 1 Pf Cf 

cc&*oo 
---1 Q -= 2h p. 00 

cog = coh*Q 

For a numerical evaluation of the last formula applicability region it was compar- 
ed in the case of a spherical shell with the analogous asymptotically exact formula for 
the damping coefficient in the index of the exponent of solution (2.8). This showed 
that for n > 8 the two formula differed by less than 16%. 

Thus formulas (4.5), (4.7), and (4.8) make possible the determination of reson- 
ant frequencies of high-frequency oscillations of a closed convex shell of arbitrary 
form immersed in a compressible fluid, and, also, the rate of acoustic pressure damp- 

ing with increasing distance from the shell. 
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